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INTRODUCTION
Measuring tissue deformations using medical images allows re-

searchers to noninvasively track tissue mechanics with degeneration or re-
habilitation. Researchers have used image texture correlation algorithms
to compare pixel intensities between successive images and calculate the
displacement field between pixels, which is then numerically differenti-
ated to obtain a strain field. These techniques have been applied in var-
ious contexts, including quantifying forces in myocardial cells,1 detect-
ing breast cancer,2 and studying impact of disease on tissue mechanics in
vitro.3 However, these algorithms often struggle with in vivo images, partly
due to low signal-to-noise ratio and out-of-plane motion.4 Therefore, the
objective of this study was to develop a new technique using deep learning
(called StrainNet) to accurately predict tissue deformation and ignore im-
age artifacts (e.g., noise). We hypothesized that StrainNet would outper-
form traditional image texture correlation algorithms on synthetic images
with known deformations and a real dataset of a wrist flexor tendon un-
dergoing contraction in vivo. Our results showed that StrainNet reduced
error by up to 84% when compared to traditional image texture correlation
algorithms in the synthetic datasets. Moreover, the measurements made
by StrainNet in the in vivo experiments were strongly correlated with
the measured grip force distributed to the wrist flexor tendons.

METHODS
Experimental Procedure. To investigate in vivo tendon mechanics,

a participant was asked to performmaximum voluntary contraction (MVC)
of their forearm using an IRB-approved protocol (IRB-2020-497). A dy-
namometer was used to track and measure applied forces during contrac-
tion, and the MVC was calculated as the average of three trials. Next, the
participant was instructed to contract their forearm to 10%, 30%, or 50%

of their MVC in three seconds, hold the contraction for five seconds, and
relax their forearm in three seconds. High-frequency ultrasound images
(Vevo3100, FUJIFILMVisualSonics Inc., Toronto, Ontario, Canada) of the
participant’s flexor digitorum superficialis tendon were collected through-
out the contraction and release. This protocol was repeated five times for
each effort level, resulting in a total of 15 trials.

Synthetic Test Cases. To test the accuracy of our strain analysis
method on a dataset with known deformations, five synthetic test cases
were created by artificially imposing a non-linear strain field onto collected
ultrasound images. These test cases simulated the process of contraction
and relaxation in our experimental procedure described above. Addition-
ally, the prescribed non-linear strain field was designed to reflect reported
observations for in vivo tendon mechanics. Specifically, the strain in the
superficial layer was set to 75% of the deep layer,5 and the tendon was
modeled as an incompressible material.6,7 The five test cases differed in
their maximum longitudinal strain, ϵmax

long , which was set to 4%, 7%, 10%,
13%, and 16% to cover the range of strains observed in vivo.5,7–9 Noise was
added to all synthetic test cases to simulate the level of noise present in the
experimental dataset. By using synthetic test cases with known deforma-
tions, we were able to compare the performance and accuracy of our deep
learning based approach with existing texture correlation algorithms.

StrainNet. StrainNet is a deep learning model designed to predict
2D Lagrangian strain from a sequence of ultrasound images of the wrist
flexor tendon. It consists of a two-stage architecture, with the first stage
classifying the type of bulk deformation present in the image pair (ten-
sile, compressive, or rigid-body) and the second stage predicting the strains
throughout the image. To train the model, a set of synthetic images with
random deformations was utilized. The deformations in these images were
generated using a generalized mathematical model of tendon mechanics,



with the governing parameters being randomly varied to produce a diverse
range of strain distributions (e.g., 2% - 20% bulk strain in the longitudi-
nal direction). The training set included 1,000 images in tension, 1,000
images in compression, and 1,000 images undergoing rigid deformation.
The model was trained using the Adam optimizer for 100 epochs, allow-
ing it to learn the patterns and features associated with different types of
deformation and accurately predict strain in unseen images.

Data Analysis and Statistics. StrainNet, digital image correla-
tion (DIC),10 and direct deformation estimation (DDE)11 were applied to
synthetic test cases and experimental images. For the synthetic test cases,
the strain error was calculated as the ℓ2-norm between the ground truth
strain tensor and the algorithm-predicted strain tensor. A pairwise permu-
tation test was conducted on the median strain error for each of the five test
cases, with significance set at p ≤ 0.05. For experimental images, the true
strain was unknown, so the analysis was limited to a qualitative assessment.
However, linear regression was conducted between the maximum longitu-
dinal strain predicted by the three algorithms during contraction and the
percentage of MVC. A strong correlation was defined as an |r| > 0.7.

RESULTS
Of the 15 trials conducted, two trials were discarded due to corruption

of data file containing the forces measured by the dynamometer.

Figure 1: Spatial distribution of errors incurred by StrainNet, DIC,
and DDE during maximum contraction in the synthetic test case with
maximum longitudinal strain of 10%. Black dashed line represents the
boundary between the flexor tendon and the surrounding soft tissue.

In the synthetic test cases, errors were largest at the boundary between
the tendon and surrounding tissue. StrainNet achieved pixel-wise strain
estimation while DIC and DDE were limited to the central area of inter-
est (Fig. 1). The median strain error from StrainNet was 48-84% lower
than the strain error from both DIC and DDE (Fig. 2; p<0.001 in all strain
cases).

Figure 2: Median strain error across all five synthetic test cases. Me-
dian strain error was statistically significantly lower than DIC and
DDE across all test cases (p < 0.001).

For the real experimental images, both DIC and DDE underperformed
and many pixels were lost during image analysis. StrainNet, on the other
hand, was able to learn around much of the noise and accurately predict the
longitudinal strain in the tendon, which increased as effort level increased.
There was a strong linear relationship between the predicted longitudinal

strain and percent MVC (Fig. 3; r = 0.784, p = 0.002), which is compara-
ble to the expected linear relationship between strain and stress for tendon
mechanics.

Figure 3: Median longitudinal strain predicted by StrainNet during
tendon contraction across all of the trials (n = 13). ×’s, •’s, and ♦’s
correspond to 10% , 30%, and 50%MVC.

DISCUSSION
StrainNet was able to accurately measure and quantify the different

strain levels using ultrasound images of the flexor tendon. For synthetic
datasets, StrainNet detected subtle differences in deformations with a
high degree of accuracy (< 3% error), outperforming existing approaches
(e.g., DIC and DDE), which had median strain errors as high as 10%. Ad-
ditionally, when applied to in vivo images, StrainNet predicted a strong
linear correlation between the measured strain and effort level (percentage
of the MVC), further validating the performance of the model. These find-
ings suggest that deep learning models have the potential to significantly
advance the accuracy of in vivo biomechanics studies.

There are several limitations to our model that will be addressed in
future work. First, the model was evaluated on a single tissue type and
location, so it is not clear whether it can be applied to a wider range of
tissue types. Additionally, the current architecture is specialized to handle
only three types of deformation, and it would be useful to explore expand-
ing its capabilities to a wider range of deformations (e.g., shear). Lastly,
improvements to the architecture or training the model on a larger dataset
may also allow us to remove the need for the first stage of the model, which
currently classifies the type of deformation present in the image pair.

The potential applications of StrainNet are numerous and exciting.
Our results indicate that StrainNet greatly outperforms traditional image
texture correlation algorithms in controlled settings, such as the synthetic
test cases (Fig. 2). In more challenging environments where image texture
correlation is prone to error due to image artifacts, such as in vivo mea-
surements of tendon mechanics in real time, StrainNet has demonstrated
the ability to provide reasonable and expected levels of tissue deformation
(Fig. 3). Taken together, these findings suggest that StrainNet could be
applied to a wide range of biomedical contexts, including in vivo studies
of muscle function, blood flow, and tissue viability. Overall, the design
and capabilities of StrainNet are ripe for continued research and devel-
opment, with the potential for significant advancements in these areas.

The code, trained models, and tutorial for using StrainNet will be
available at strainnet.net.
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